Bay Region Diol Epoxides of Benzo[c]phenanthrene: Force-field Molecular Structures

By B. David Silverman • and Samuel J. La Placa, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, U.S.A.

The molecular structures of the diequatorial and diaxial conformers of the *syn-* and *anti-benzo[c]phenanthrene* 'fjord-region' diol epoxide diastereoisomers have been determined by the Allinger force-field program. Certain features of steric crowding in the 'fjord-region ' of the molecule that contribute to relative conformer stability are discussed.

THE structures of polycyclic aromatic hydrocarbons (PAH) are of interest in investigations aimed at elucidating carcinogenic structure-activity relationships.¹ The topological arrangement of the six-membered rings of PAH has important implications with respect to the relative carcinogenicity of different molecules. The relationships between molecular topology and relative carcinogenicity has been the subject of both K-region² and bay-region³ theories of carcinogenicity.

Recent investigations ^{4,5} have focused on the tumorigenicity and mutagenicity of the dihydrodiols and diolepoxides of benzo[c]phenanthrene (BCP) (Figure 1).

FIGURE 1 Benzo[c]phenanthrene (BCP)

Dihydrodiols and diol epoxides have been implicated as proximate and ultimate carcinogenic metabolites of PAH.⁶ BCP is a molecule of special interest since the severe steric crowding in the fjord-region that is responsible for deviations from molecular planarity appears to be responsible for the comparable carcinogenic and mutagenic activity ^{4,5} of the syn- and anti-diastereoisomers of the fjord-region diol epoxide. Steric crowding in the fjord-region apparently forces the hydroxy-groups of the syn-diastereoisomer to adopt a quasi-diequatorial conformation (Figure 2).

FIGURE 2 syn-Diequatorial BCP diol epoxide conformer (3,4-diol 1,2-epoxide)

This paper reports the results of a force-field determination of the structures of the fjord-region diol epoxides of BCP. Certain features involving steric crowding in the fjord-region of the molecule that contribute to relative conformer stability will be discussed. A comparison between the force-field-determined structure of the parent molecule and X-ray structural results will also be given.

METHOD

The structures of the fjord-region epoxide conformers of BCP have been determined with the use of the Allinger forcefield program.⁷ The Allinger force-field parameters have been extended by the addition of an oxiran parameter set provided by Jorgensen and Snyder.⁸ Diol epoxide structures were obtained by adding the hydroxy-groups to the force-field-determined epoxide structures. The orientations of the hydrogen of the hydroxy-groups were determined by the CNDO/2 molecular orbital program.⁹ The force-field program has been shown ¹⁰ to yield good agreement between the calculated structure of the *anti*-diequatorial bayregion diol epoxide of benzo[*a*]pyrene (BP) and the X-raydetermined structure.¹¹

RESULTS AND DISCUSSION

Table 1 lists the force-field-determined bond lengths of BCP along with the X-ray scattering results from a monomolecular ¹² and charge-transfer ¹³ crystal. One

TABLE 1

Bond lengths (Å) of benzo[c]phenanthrene

Bond Force-field	Ref. 12	Ref. 13
C(1)-C(2) 1.38	1.38	1.37
C(1) - C(18) 1.42	1.43	1.41
C(2) - C(3) 1.41	1.41	1.39
C(3) - C(4) 1.38	1.37	1.36
C(4) - C(13) 1.42	1.39	1.41
C(5)-C(13) 1.44	1.44	1.43
C(5)-C(6) 1.37	1.34	1.34
C(6)-C(14) 1.44	1.43	1.43
C(13) - C(18) 1.41	1.43	1.42
C(14)-C(17) 1.40	1.41	1.42
C(16)-C(17) 1.45	1.45	1.45

TABLE 2

Non-bonded distances (Å) across the fjord-region: benzo[c]phenanthrene

	Force-field	Ref. 12
C(1) - C(12)	3.04	3.03
C(1) - H(12)	2.59	2.53
H(1) - H(12)	2.33	2.04

TABLE 3

Atom	x	у	z
C(1)	0.9359	1.4596	0.5959
C(2)	2.2417	2.0793	0.3501
C(3)	3.2752	1.1740	-0.2934
C(4)	3.1435	-0.2225	0.3130
C(5)	1.5851	-2.1775	-0.0873
C(6)	0.3168	-2.7223	-0.1342
C(7)	-2.1340	-2.4875	-0.0003
Č(8)	-3.2482	-1.7157	0.1245
C(9)	-4.3255	0.5075	0.1206
C(10)	-4.2646	1.8810	-0.0392
C(11)	-3.0254	2.4884	-0.3224
C(12)	-1.8674	1.7262	-0.3581
C(13)	1.7542	-0.7888	0.1091
C(14)	-0.8223	-1.8836	-0.0576
C(15)	-3.1457	-0.2768	0.0671
C(16)	-1.8820	0.3397	-0.0640
C(17)	-0.6725	-0.4811	-0.0138
C(18)	0.6395	0.0436	0.1752
O(12)	1.1132	2.4084	-0.4596
O(3)	4.5496	1.7000	-0.1722
O(4)	4.0978	-1.0501	-0.2526
H(1)	0.3618	1.8174	1.4603
H(2)	2.5818	2.9161	0.9765
H(3)	3.0636	1.1633	-1.3713
H(4)	3.3087	-0.1876	1.3983
H(5)	2.4552	-2.8376	-0.1334
H(6)	0.2062	-3.8068	-0.2191
H(7)	-2.2373	-3.5763	-0.0023
H(8)	-4.2283	-2.1940	0.2073
H(9)	-5.2997	0.0362	0.2754
H(10)	5 .1760	2.4858	-0.0042
H(11)	-2.9929	3.5631	-0.5291
H(12)	-0.9632	2.2411	-0.6723
HO(3)	5.1946	1.1643	-0.6016
HO(4)	4.9501	-0.6942	-0.0673

notes that the bond-length differences observed by X-ray scattering are paralleled closely by the force-field results. Table 2 lists three non-bonded distances across the fjord-region. The force-field-determined distances are com-

FIGURE 3 anti-Diaxial BCP diol epoxide conformer (3,4-diol 1,2-epoxide)

FIGURE 4 syn-Diaxial BCP diol epoxide conformer (3,4-diol 1,2-epoxide)

Non-bonded distances (Å) across the fjord-region of diol epoxides of benzo[c] phenanthrene

	H(1)-H(12)	H(1)-C(12)	H(12)-C(1)	C(1)-C(12)	H(12)-O(12)
syn-diequatorial; <i>anti</i> -diaxial syn-diaxial; <i>anti</i> -diequatorial	2.55 2.35	$\begin{array}{c} 2.88\\ 2.61\end{array}$	$\begin{array}{c} 2.41 \\ 2.56 \end{array}$	2.97 3.04	2.09 3.93

pared with the X-ray determined distances of the monomolecular crystal. One notes the close agreement of the distances between carbon atoms.

Table 3 lists the force-field-determined Cartesian coordinates * for the syn-diequatorial fjord-region diol epoxide (Figure 2). This conformer of the syn-diastereoisomer is stabilized due to steric crowding in the fjordregion. Table 4 lists certain non-bonded distances across

FIGURE 5 anti-Diequatorial BCP diol epoxide conformer (3,4-diol 1,2-epoxide)

the fjord-region for the diol epoxides of BCP (Figures 2—5). A comparison of the H(1)—H(12) distances indicates greater steric crowding between the two hydrogen atoms in the fjord-region of the syn-diaxial and antidiequatorial conformers compared with the syn-diequatorial and anti-diaxial conformers. This is responsible for the stabilization of the syn-diequatorial con-

* Cartesian co-ordinates of the other diol epoxide conformers are available by request.

former with respect to the syn-diaxial conformer. The strain energy of the syn-diequatorial conformer is found to be ca. 5 kcal mol⁻¹ lower than the strain energy of the syn-diaxial conformer. One finds a similar stabilization of the anti-diaxial conformer with respect to the antidiequatorial conformer. The anti-diaxial fjord-region diol epoxide of BCP has apparently not been observed.^{4,5}

Conclusions.-The molecular structures of the fjordregion diol epoxides of BCP have been determined with the use of the Allinger force-field program.⁷ Steric crowding in the fjord-region of the diol epoxides is shown to significantly distort the molecules from planarity. Steric crowding in the fjord-region of the syn-diastereoisomer is found to stabilize the diequatorial with respect to the diaxial conformer. A complete set of Cartesian coordinates is given for the sterically crowded syn-diequatorial fjord-region diol epoxide of BCP.

[1/1258 Received, 10th August, 1981]

 $\dagger 1 \text{ cal} = 4.184 \text{ J}.$

REFERENCES

¹ J. C. Arcos and M. F. Argus, 'Chemical Induction of Cancer,' Academic Press, New York and London, 1974, sect. 5.1.1.2.

 ² B. Pullman, Int. J. Quant. Chem., 1979, 16, 669.
 ³ M. Nordquist, D. R. Thakker, H. Yagi, R. E. Lehr, A. W. Wood, W. Levin, A. H. Conney, and D. M. Jerina, in ' Molecular

Wood, W. Levin, A. H. Conney, and D. M. Jerina, in Molecular Basis of Environmental Toxicity,' ed. R. S. Bhatnagar, Ann Arbor Science, Ann Arbor, 1980, p. 329.
⁴ A. W. Wood, R. L. Chang, W. Levin, D. E. Ryan, P. E. Thomas, M. Croisy-Delcey, Y. Ittah, H. Yagi, D. M. Jerina, and A. H. Conney, *Cancer Res.*, 1980, 40, 2876.
⁵ W. Levin, A. W. Wood, R. L. Chang, Y. Ittah, M. Croisy-Delcey, H. Yogi, D. M. Jerina, and A. Gonney, *Cancer Res.*, 1980, 40, 2876.

Delcey, H. Yagi, D. M. Jerina, and A. H. Conney, Cancer Res., 1980, 40, 3910.

P. Sims, in 'Carcinogenesis: Fundamental Mechanisms and Environmental Effects,' eds. B. Pullman, P. O. P. Ts'o, and H.

Gelboin, Reidel, 1980, p. 33. ⁷ N. L. Allinger and J. T. Sprague, J. Am. Chem. Soc., 1973, 95, 3893; Quantum Chemistry Program Exchange, Indiana University, Program No. 318.

 ⁸ F. S. Jorgensen and J. P. Snyder, unpublished results.
 ⁹ J. A. Pople and D. L. Beveridge, 'Approximate Molecular Orbital Theory,' McGraw-Hill, New York, 1970; Quantum Chemistry Program Exchange, Indiana University, Program No. 141.

¹⁰ B. D. Silverman, submitted.

¹¹ S. Neidle, A. Subbiah, C. S. Cooper, and O. Riberio, Carcinogenesis, 1980, 1, 249.

¹² F. L. Hirshfeld, S. Sandler, and G. M. J. Schmidt, J. Chem. Soc., 1963, 2108. ¹³ J. Bernstein,

H. Regev, and F. H. Herbstein, Acta Crystallogr., 1977, B33, 1716.